Un buen día un tal Sissa se presentó en su corte y pidió audiencia. El rey la aceptó y Sissa le presentó un juego que, aseguró, conseguiría divertirle y alegrarle de nuevo: el ajedrez.
Después de explicarle las reglas y entregarle un tablero con sus piezas el rey comenzó a jugar y se sintió maravillado: jugó y jugó y su pena desapareció en gran parte. Sissa lo había conseguido.
Sheram, agradecido por tan preciado regalo, le dijo a Sissa que como recompensa pidiera lo que deseara. Éste rechazó esa recompensa, pero el rey insistió y Sissa pidió lo siguiente:
Deseo que ponga un grano de trigo en el primer cuadro del tablero, dos, en el segundo, cuatro en el tercero, y así sucesivamente, doblando el número de granos en cada cuadro, y que me entregue la cantidad de granos de trigo resultante.
El rey se sorprendió bastante con la petición creyendo que era una recompensa demasiado pequeña para tan importante regalo y aceptó. Mandó a los calculistas más expertos de la corte que calcularan la cantidad exacta de granos de trigo que había pedido Sissa, es decir:
1 + 2 + 4 + 8 + … + 262 + 263
Cuál fue su sorpresa cuando éstos le comunicaron que no podía entregar esa cantidad de trigo ya que ascendía a:
18.446.744.073.709.551.615 granos de trigo
El rey se quedó de piedra. Pero en ese momento Sissa renunció al presente. Tenía suficiente con haber conseguido que el rey volviera a estar feliz y además les había dado una lección matemática que no se esperaban.
Esta leyenda es bastante conocida. Seguro que much@s de vosotr@s sabíais de su existencia. Pero hay una variante que serviría para que la lección matemática se la llevara el listillo de Sissa:
Supongamos que el rey al pensar que la petición de Sissa era irrisoria le hubiese ofrecido granos de trigo en esa progresión pero hasta el infinito, es decir:
1 + 2 + 4 + 8 + … + 262 + 263 + 264 + …
Veamos qué hubiera pasado:
Llamemos S a la cantidad cantidad de granos de trigo que recibiría Sissa, es decir:S = 1 + 2 + 4 + 8 + … + 262 + 263 + 264 + …Ahora operemos de la siguiente forma:S = 1 + (2 + 4 + 8 + … + 262 + 263 + 264 + …) = 1 + 2·(1 + 2 + 4 + 8 + … + 262 + 263 + 264 + …)Es decir, sacamos factor común 2 de la parte de la suma que teníamos entre paréntesis. Pero como podemos observar lo que nos ha quedado entre paréntesis es exactamente igual a S. Esto es:S = 1 + 2·S —> (Despejando) —> S = -1
Por tanto la generosidad infinita del rey se ve recompensada: no solamente no debe pagar nada a Sissa sino que éste le debe entregar un grano de trigo.
El fallo de este razonamiento es muy sencillo (para alguien que esté algo familiarizado con estos temas claro ). A ver quién lo encuentra primero.
No hay comentarios:
Publicar un comentario